
Нейронные сети
Статья
Время чтения
5 минут
Нейронные сети — вычислительные системы или машины, созданные для моделирования аналитических действий, совершаемых человеческим мозгом.
Нейронные сети относятся к направлению искусственного интеллекта (ИИ) и применяются для распознавания скрытых закономерностей в необработанных данных, группировки и классификации, а также решения задач в области ИИ, машинного и глубокого обучения.
Искусственные нейронные сети состоят из нескольких слоев:
входных;
скрытых;
выходных.
В каждом из них есть несколько узлов, которые соединены со всеми узлами в сети с помощью разных связей и имеют свой «вес», влияющий на силу передаваемого сигнала.
Такая архитектура позволяет вести параллельную обработку данных и постоянно сравнивать их с результатами обработки на каждом из этапов.
Нейронные сети изначально обучаются на размеченных наборах данных с очевидными закономерностями, а после используют полученные навыки для самообучения и достижения результата.
При этом нейросеть может совершать миллионы попыток для достижения таких же результатов, как и предоставленном для обучения примере.
Примечание: Работа нейронной сети сравнима с действиями человека: сталкиваясь с незнакомым предметом, он узнает его свойства и делает выводы. Аналогичные процессы происходят в узлах нейросетей, когда решая определенную задачу, они используют полученный опыт для дальнейшего обучения.
Виды нейронных сетей
Есть десятки видов нейросетей, которые отличаются архитектурой, особенностями функционирования и сферами применения. При этом чаще других встречаются сети трех видов.
Нейронные сети прямого распространения (Feed forward neural networks, FFNN). Прямолинейный вид нейросетей, при котором соседние узлы слоя не связаны, а передача информации осуществляется напрямую от входного слоя к выходному. FFNN имеют малую функциональность, поэтому часто используются в комбинации с сетями других видов.
Сверточные нейронные сети (Convolutional neural network, CNN). Состоят из слоев пяти типов:
входного;
свертывающего;
объединяющего;
подключенного;
выходного.
Каждый слой выполняет определенную задачу: например, обобщает или соединяет данные.
Сверточные нейросети применяются для классификации изображений, распознавания объектов, прогнозирования, обработки естественного языка и других задач.
Рекуррентные нейронные сети (Recurrent neural network, RNN). Используют направленную последовательность связи между узлами. В RNN результат вычислений на каждом этапе используется в качестве исходных данных для следующего. Благодаря этому, рекуррентные нейронные сети могут обрабатывать серии событий во времени или последовательности для получения результата вычислений.
RNN применяют для языкового моделирования и генерации текстов, машинного перевода, распознавания речи и других задач.
Типы задач, которые решают нейронные сети
Выделяют несколько базовых типов задач, для решения которых могут использоваться нейросети.
Классификация. Для распознавания лиц, эмоций, типов объектов: например, квадратов, кругов, треугольников. Также для распознавания образов, то есть выбора конкретного объекта из предложенного множества: например, выбор квадрата среди треугольников.
Регрессия. Для определения возраста по фотографии, составления прогноза биржевых курсов, оценки стоимости имущества и других задач, требующих получения в результате обработки конкретного числа.
Прогнозирования временных рядов. Для составления долгосрочных прогнозов на основе динамического временного ряда значений. Например, нейросети применяются для предсказания цен, физических явлений, объема потребления и других показателей. По сути, даже работу автопилота Tesla можно отнести к процессу прогнозирования временных рядов.
Кластеризация. Для изучения и сортировки большого объема неразмеченных данных в условиях, когда неизвестно количество классов на выходе, то есть для объединения данных по признакам. Например, кластеризация применяется для выявления классов картинок и сегментации клиентов.
Генерация. Для автоматизированного создания контента или его трансформации. Генерация с помощью нейросетей применяется для создания уникальных текстов, аудиофайлов, видео, раскрашивания черно-белых фильмов и даже изменения окружающей среды на фото.
Примечание: Например, нейронная сеть ruDALL-E, может генерировать уникальные изображения на основе текстового описания.
Математическая модель нейрона Маккаллока - Питтса разработана по аналогии с биологическими нервными клетками и выглядит следующим образом:
Где:
X — входные данные — сигналы, поступающие к нейрону;
W — вес — эквивалент синаптической связи, представленный в виде действительного числа, на которое умножается значение входного сигнала для определения степени взаимосвязи отдельных нейронов;
H — тело нейрона — показатель накопленной взвешенной суммы, полученной в результате умножения значений входящих сигналов на вес;
Y — выход нейронной сети — функция, получаемая в результате обработки входных сигналов.
Примечание: При такой модели обучение нейронной сети сводится к изменению коэффициенту весов, то есть связи между отдельными нейронами. Если вес положительный — сигнал в нейроне усиливается, нулевой — нейроны не влияют друг на друга, отрицательный — сигнал в принимающем нейроне погашается.
Для определения выходных значений нейрона используются функции активации разного вида, каждая из которых влияет на работу нейронных сетей и отличается принципом оценки или преобразования данных.Так:
Функция Хевисайда преобразовывает значения при их накоплении выше установленного порога. Например, значение +100 преобразовывается в 1, а -100 — в 0.
Пороговая функция. Применяется для отображения состояния нейрона: его возбудимости или спокойствия. Может отображать только два значения: 0% и 100%.
Синоидальные функции применяются для сглаживания значений.
Функция ReLU отсекает только отрицательные значения. Например, значение -100 преобразовывается в 0, а +50 остается неизменным.
Функция ReLu производит простые математические операции, поэтому помогает снизить нагрузку на вычислительные мощности при глубоком обучении.
Нейросети, в отличие от других алгоритмов ИИ, не программируются на выполнение конкретных задач, а просто настраиваются на изучение информации.Стратегия обучения нейронных сетей базируется на трех методах:
Контролируемое обучение. Классическая модель обучения, в которой используется набор размеченных данных, показывающий алгоритму что и как должно быть. Обучение продолжается до полного перестраивания алгоритма под решение конкретных задач и получения нужного результата.
Обучение без контроля. Стратегия обучения, применяемая в ситуациях, когда нет размеченных наборов данных. В этой модели нейронная сеть выполняет анализ, а после получает внутренний отчет о точности расчета. Если значение недостаточно, нейронная сеть усиливается и повторяет операцию.
Усиленное обучение. Модель, при которой нейронная сеть усиливается при получении положительного результата и наказывается за неправильные расчеты.
Мы предлагаем готовые решения для работы с искусственным интеллектом, машинным обучением и нейронными сетями. Клиентам доступны платформа для совместной ML-разработки с ускорением до +1700 GPU Tesla v100 и A100 ML Space, инструменты для обработки языка ruGPT-3 & family и другие сервисы.
Вам может понравиться


INSERT INTO SQL: примеры добавления данных в таблицу

Node.js на Ubuntu 24.04: как установить и настроить

Что такое HTTPS и как он защищает ваши данные

REST API: что это и как использовать

Как создать Telegram Web App: инструкция по разработке Mini App

Как привлекать клиентов и зарабатывать до 20% на рекомендациях: готовые инструменты

Коды ошибок HTTP: что нужно знать о серверных и клиентских ошибках

Лучшие дистрибутивы Linux: выбор популярных версий

Система управления базами данных (СУБД): что это такое и зачем нужна

Все о Telegram-ботах: какие бывают и как их сделать самому

VPS/VDS: что это такое и чем они отличаются? Полное руководство

Что такое NVMe и как он отличается от SATA SSD и M.2

Микросервисная архитектура: чем она хороша и кому нужна

Как развернуть WordPress в облаке: инструкция для новичков

Применение LLM в бизнесе: опыт лидеров и роль облачного провайдера

Центры обработки данных (ЦОД): что это и как они работают

Какие новости за январь — дайджест Cloud.ru

Команда grep в Linux: как искать строки и шаблоны

PostgreSQL: что это за СУБД и чем она хороша

Что может chmod: как управлять доступами к файлам и папкам в Linux

Как узнать IP-адрес в Linux через командную строку

Как узнать IP-адрес своего компьютера

Система MySQL: что это и для чего нужна

Команды kill и killall в Linux: как завершить ненужные процессы

Работа с файлами в Linux: их создание и организация через терминал

Стандарт Tier III для дата-центра: что значит и почему это круто

Какие новости за декабрь и начало января — дайджест Cloud.ru

Что такое FTP-протокол и как настроить FTP сервер

Белые и серые IP, динамические и статические - в чем различие

Как защищать сайты и приложения в облаке от DDoS-атак

Какие новости за ноябрь — дайджест Cloud.ru

BAT-файлы: что это такое, зачем они нужны и как их создавать

Гайд по протоколу HTTP: расшифровка, структура и механизм работы

Межсетевой экран, firewall и брандмауэр: что это, в чем между ними разница и зачем они нужны

Kubernetes на Cloud.ru Evolution: возможности и преимущества

Какие новости за октябрь — дайджест Cloud.ru

Как создать сетевую архитектуру для размещения межсетевых экранов на платформе Облако VMware

Рассказать про технологии лампово, или Как мы провели конференцию GoCloud Tech для инженеров и...

Какие новости за сентябрь — дайджест Cloud.ru

Высокоресурсные вычисления: роль суперкомпьютеров в жизни и бизнесе

Реферальная программа Cloud.ru: как устроена и как на ней зарабатывать

Сетевая модель OSI: что это такое и зачем она нужна

Какие новости за август — дайджест Cloud.ru

Сетевые протоколы передачи данных — что это такое и какие бывают

Какие новости за июль — дайджест Cloud.ru

Как новые возможности в юридических документах Cloud.ru облегчают работу с договорами и не только

Какие новости за июнь — дайджест Cloud.ru

Как обновления VMware Cloud Director облегчают управление и делают работу с инфраструктурой в ...

Как мы рассчитывали «Панораму российского IT-рынка» за 2022 год

Как снизить риски утечки данных и санкций госрегуляторов: 152-ФЗ в Cloud.ru

Бесплатный курс по работе с Cloud.ru Advanced: рассказываем, в чем польза, кому подойдет и как...

Как модель Anything as a Service упрощает IT-процессы

Снижение рисков на производстве: AI-сервис распознает нарушения ношения СИЗ

Kandinsky 2.1: новый уровень в генерации изображений по текстовому описанию

Облачные сервисы для стартапов: как пройти путь от идеи до цифрового продукта и не разориться

Создать пользователя, настроить 2FA, связаться с поддержкой — новые возможности личного кабине...

VDI: что это, как работает и в чем выгода для бизнеса

Как защитить облачную инфраструктуру — рассказываем на примере межсетевого экрана нового покол...

Как начать использовать AI/ML на практике

Бессерверные вычисления: что это за технология и кому она нужна

Чек-лист: как обеспечить безопасность облачной инфраструктуры

Искусственный интеллект

Что такое IaaS?

Что такое PaaS

Machine Learning

Data Science

Машинное обучение без учителя

Классическое машинное обучение

Глубокое обучение

Защита персональных данных: как легче соблюдать закон с Cloud.ru и сохранять спокойствие

Как сохранить IT-инфраструктуру и бизнес: руководство к действию

Машинное обучение и Big Data в кибербезопасности

Ответы на актуальные вопросы

Что такое DDoS-атаки, чем они опасны и как от них защититься

Аудит информационной безопасности: что это, зачем и когда его проводить

Межсетевые экраны: UTM, NGFW-системы, NTA, NDR

Обзор межсетевых экранов, систем IPS и IDS

PostgreSQL vs MySQL: какая система подходит вашему бизнесу

Основы резервного копирования

Специальное предложение «180 дней тестового периода резервного копирования» для всех клиентов
Платформа SberCloud Advanced теперь обеспечивает максимальный уровень защиты персональных данных

Что такое объектное хранилище S3 и как его используют

Customer Enablement: как SberCloud работает с клиентами, чтобы сделать миграцию в облако комфо...

Сеть доставки контента CDN: новые функциональные возможности и преимущества

Объясняем на кейсах: польза CDN для бизнеса

Новая Windows Server 2022 в облаке SberCloud — новые возможности клиентов

Запуск нового сервиса Managed OpenShift в облачной среде SberCloud

Как работает технология DNS

SberCloud Advanced запустила третью ресурсную зону доступности для комфортной работы клиентов

PostGIS в PostgreSQL — как можно использовать

GitLab для начинающих: как и для чего используется

Краткий обзор методологии CI/CD: принципы, этапы, плюсы и минусы

Персональные данные: правильно обрабатываем и храним

Кто и зачем использует облачные модели IaaS и PaaS

152-ФЗ в облаке: хранение персональных данных в облаке

Как работает CDN (Content Delivery Network)?

Service Level Agreement (SLA): все о соглашении об уровне сервиса

Что такое «интернет поведения» (IoB)?

Чек-лист: 6 шагов для успешной миграции в облако

Машинное обучение: просто о сложном

Профессия DevOps-инженер: кто это и чем занимается

Гайд по Kubernetes. Эпизод I: k8s для неразработчиков

Публичные, частные и гибридные облака: в чем разница?
