yandex
Калькулятор ценТарифыАкцииДокументацияО насКарьера в Cloud.ruНовостиЮридические документыКонтактыРешенияРеферальная программаКейсыПартнерство с Cloud.ruБезопасностьEvolutionAdvancedEvolution StackОблако VMwareML SpaceВ чем отличия платформ?БлогОбучение и сертификацияМероприятияИсследования Cloud.ruЛичный кабинетВойтиЗарегистрироватьсяEvolution ComputeEvolution Managed KubernetesEvolution Object StorageEvolution Managed PostgreSQL®Облако для мобильных и веб‑приложенийАналитика данных в облакеEvolution Bare MetalEvolution SSH KeysEvolution ImageСайт в облакеEvolution DNSEvolution VPCEvolution Load BalancerEvolution Magic RouterEvolution DiskХранение данных в облакеEvolution Container AppsEvolution Artifact RegistryEvolution Managed ArenadataDBEvolution Managed TrinoEvolution Managed SparkАналитика данных в облакеEvolution ML InferenceEvolution Distributed TrainEvolution ML FinetuningEvolution NotebooksCurator Anti-DDoSCurator Anti‑DDoS+WAFUserGate: виртуальный NGFWStormWall: Anti-DDoSEvolution TagsEvolution Task HistoryCloud MonitoringCloud LoggingАренда GPUAdvanced Object Storage ServiceAdvanced Elastic Cloud ServerAdvanced Relational Database Service for PostgreSQLРазработка и тестирование в облакеAdvanced Image Management ServiceAdvanced Auto ScalingDirect ConnectCDNCross-platform connectionAdvanced Enterprise RouterAdvanced Cloud Backup and RecoveryAdvanced Data Warehouse ServiceAdvanced Elastic Volume ServiceAdvanced Cloud Container EngineAdvanced FunctionGraphAdvanced Container Guard ServiceAdvanced Software Repository for ContainerAdvanced Document Database Service with MongoDBAdvanced Relational Database Service for MySQLAdvanced Relational Database Service for SQL ServerCloud AdvisorAdvanced Server Migration ServiceAdvanced Data Replication ServiceAdvanced API GatewayAdvanced CodeArtsAdvanced Distributed Message Service for KafkaAdvanced Distributed Message Service for RabbitMQAdvanced DataArts InsightAdvanced CloudTableAdvanced MapReduce ServiceAdvanced Cloud Trace ServiceAdvanced Application Performance ManagementAdvanced Identity and Access ManagementAdvanced Enterprise Project Management ServiceVMware: виртуальный ЦОД с GPUVMware: виртуальный ЦОДУдаленные рабочие столы (VDI)VMware: сервер Bare MetalИнфраструктура для 1С в облакеУдаленные рабочие столыМиграция IT‑инфраструктуры в облако3D-моделирование и рендерингVMware: резервное копирование виртуальных машинVMware: резервный ЦОДVMware: резервное копирование в облакоVMware: миграция виртуальных машин
Поиск
Связаться с нами

Нейронные сети

Нейронные сети — вычислительные системы или машины, созданные для моделирования аналитических действий, совершаемых человеческим мозгом.

Обзоры
Иллюстрация для статьи на тему «Нейронные сети»
Продукты из этой статьи:
Иконка-ML Space
ML Space
Иконка-Evolution Foundation Models
Evolution Foundation Models
Иконка-Evolution AI Agents
Evolution AI Agents
Иконка-Evolution ML Inference
Evolution ML Inference

Нейронные сети относятся к направлению искусственного интеллекта (ИИ) и применяются для распознавания скрытых закономерностей в необработанных данных, группировки и классификации, а также решения задач в области ИИ, машинного и глубокого обучения.

Искусственные нейронные сети состоят из нескольких слоев:

  • входных;

  • скрытых;

  • выходных.

В каждом из них есть несколько узлов, которые соединены со всеми узлами в сети с помощью разных связей и имеют свой «вес», влияющий на силу передаваемого сигнала.

Такая архитектура позволяет вести параллельную обработку данных и постоянно сравнивать их с результатами обработки на каждом из этапов.

Нейронные сети изначально обучаются на размеченных наборах данных с очевидными закономерностями, а после используют полученные навыки для самообучения и достижения результата.

При этом нейросеть может совершать миллионы попыток для достижения таких же результатов, как и предоставленном для обучения примере.

Примечание: Работа нейронной сети сравнима с действиями человека: сталкиваясь с незнакомым предметом, он узнает его свойства и делает выводы. Аналогичные процессы происходят в узлах нейросетей, когда решая определенную задачу, они используют полученный опыт для дальнейшего обучения.

Дарим до 20 000 бонусов
Дарим до 20 000 бонусов
4 000 бонусов — физическим лицам, 20 000 бонусов — юридическим

Виды нейронных сетей

Есть десятки видов нейросетей, которые отличаются архитектурой, особенностями функционирования и сферами применения. При этом чаще других встречаются сети трех видов.

Нейронные сети прямого распространения (Feed forward neural networks, FFNN). Прямолинейный вид нейросетей, при котором соседние узлы слоя не связаны, а передача информации осуществляется напрямую от входного слоя к выходному. FFNN имеют малую функциональность, поэтому часто используются в комбинации с сетями других видов.

Сверточные нейронные сети (Convolutional neural network, CNN). Состоят из слоев пяти типов:

  • входного;

  • свертывающего;

  • объединяющего;

  • подключенного;

  • выходного.

Каждый слой выполняет определенную задачу: например, обобщает или соединяет данные.

Сверточные нейросети применяются для классификации изображений, распознавания объектов, прогнозирования, обработки естественного языка и других задач.

Рекуррентные нейронные сети (Recurrent neural network, RNN). Используют направленную последовательность связи между узлами. В RNN результат вычислений на каждом этапе используется в качестве исходных данных для следующего. Благодаря этому, рекуррентные нейронные сети могут обрабатывать серии событий во времени или последовательности для получения результата вычислений.

RNN применяют для языкового моделирования и генерации текстов, машинного перевода, распознавания речи и других задач.

Типы задач, которые решают нейронные сети

Выделяют несколько базовых типов задач, для решения которых могут использоваться нейросети.

  • Классификация. Для распознавания лиц, эмоций, типов объектов: например, квадратов, кругов, треугольников. Также для распознавания образов, то есть выбора конкретного объекта из предложенного множества: например, выбор квадрата среди треугольников.

  • Регрессия. Для определения возраста по фотографии, составления прогноза биржевых курсов, оценки стоимости имущества и других задач, требующих получения в результате обработки конкретного числа.

  • Прогнозирования временных рядов. Для составления долгосрочных прогнозов на основе динамического временного ряда значений. Например, нейросети применяются для предсказания цен, физических явлений, объема потребления и других показателей. По сути, даже работу автопилота Tesla можно отнести к процессу прогнозирования временных рядов.

  • Кластеризация. Для изучения и сортировки большого объема неразмеченных данных в условиях, когда неизвестно количество классов на выходе, то есть для объединения данных по признакам. Например, кластеризация применяется для выявления классов картинок и сегментации клиентов.

  • Генерация. Для автоматизированного создания контента или его трансформации. Генерация с помощью нейросетей применяется для создания уникальных текстов, аудиофайлов, видео, раскрашивания черно-белых фильмов и даже изменения окружающей среды на фото.

Примечание: Например, нейронная сеть ruDALL-E, может генерировать уникальные изображения на основе текстового описания. 

Математическая модель нейрона Маккаллока - Питтса разработана по аналогии с биологическими нервными клетками и выглядит следующим образом:

Где:

  • X — входные данные — сигналы, поступающие к нейрону;

  • W — вес — эквивалент синаптической связи, представленный в виде действительного числа, на которое умножается значение входного сигнала для определения степени взаимосвязи отдельных нейронов;

  • H — тело нейрона — показатель накопленной взвешенной суммы, полученной в результате умножения значений входящих сигналов на вес;

  • Y — выход нейронной сети — функция, получаемая в результате обработки входных сигналов.

Примечание: При такой модели обучение нейронной сети сводится к изменению коэффициенту весов, то есть связи между отдельными нейронами. Если вес положительный — сигнал в нейроне усиливается, нулевой — нейроны не влияют друг на друга, отрицательный — сигнал в принимающем нейроне погашается.

Evolution AI Factory
Evolution AI Factory
Цифровая среда нового поколения для создания, запуска и масштабирования приложений на базе GenAI
Подробнее

Для определения выходных значений нейрона используются функции активации разного вида, каждая из которых влияет на работу нейронных сетей и отличается принципом оценки или преобразования данных.Так:

  • Функция Хевисайда преобразовывает значения при их накоплении выше установленного порога. Например, значение +100 преобразовывается в 1, а -100 — в 0.

  • Пороговая функция. Применяется для отображения состояния нейрона: его возбудимости или спокойствия. Может отображать только два значения: 0% и 100%.

  • Синоидальные функции применяются для сглаживания значений.

  • Функция ReLU отсекает только отрицательные значения. Например, значение -100 преобразовывается в 0, а +50 остается неизменным.

Функция ReLu производит простые математические операции, поэтому помогает снизить нагрузку на вычислительные мощности при глубоком обучении.

Нейросети, в отличие от других алгоритмов ИИ, не программируются на выполнение конкретных задач, а просто настраиваются на изучение информации.Стратегия обучения нейронных сетей базируется на трех методах:

  • Контролируемое обучение. Классическая модель обучения, в которой используется набор размеченных данных, показывающий алгоритму что и как должно быть. Обучение продолжается до полного перестраивания алгоритма под решение конкретных задач и получения нужного результата.

  • Обучение без контроля. Стратегия обучения, применяемая в ситуациях, когда нет размеченных наборов данных. В этой модели нейронная сеть выполняет анализ, а после получает внутренний отчет о точности расчета. Если значение недостаточно, нейронная сеть усиливается и повторяет операцию.

  • Усиленное обучение. Модель, при которой нейронная сеть усиливается при получении положительного результата и наказывается за неправильные расчеты.

Мы предлагаем готовые решения для работы с искусственным интеллектом, машинным обучением и нейронными сетями. Клиентам доступны платформа для совместной ML-разработки с ускорением до +1700 GPU Tesla v100 и A100 ML Space, инструменты для обработки языка ruGPT-3 & family и другие сервисы.

  1. Машинное обучение

  2. Искусственный интеллект

  3. Data Science

Продукты из этой статьи:
Иконка-ML Space
ML Space
Иконка-Evolution Foundation Models
Evolution Foundation Models
Иконка-Evolution AI Agents
Evolution AI Agents
Иконка-Evolution ML Inference
Evolution ML Inference
6 июля 2022

Вам может понравиться