Искусственный интеллект
Искусственный интеллект (ИИ) — технология, позволяющая системе, машине или компьютеру выполнять задачи, требующие разумного мышления, то есть имитировать поведение человека для постепенного обучения с использованием полученной информации и решения конкретных вопросов.
Интеграция ИИ в механизмы и системы позволяет автоматизировать рутинные, трудоемкие или сложные процессы, в том числе повысить их точность и производительность. Поэтому, эта технология — важный бизнес-ресурс.
Примечание: По данным Statista к 2025 году мировой рынок программного обеспечения (ПО) для искусственного интеллекта будет оцениваться в $22.6 млрд.
Преимущества внедрения ИИ
Использование искусственного интеллекта и решений на его базе обеспечивает бизнесу ряд преимуществ.
- Исключение человеческого фактора. Использование программируемых, самообучающихся алгоритмов исключает фактор человеческой ошибки и позволяет находить даже неочевидные для человека решения.
- Снижение рисков. Машины с ИИ могут применяться в ситуациях, связанных с риском для человека. Например, роботы с ИИ могут заменить человека на отдельных производственных участках или при работе в условиях стихийных бедствий.
- Круглосуточная доступность. Интеллектуальные машины можно использовать без перерывов, выходных, они не реагируют на отвлекающие факторы.
- Адаптируемость. В рамках установленных условий применение ИИ-решений позволяет находить быстрые решения. Например, ИИ в чат-ботах помогает лучше понимать «живой» язык клиентов, находить ответы на сложно сформулированные вопросы, справляться с большим потоком одновременных обращений и вопросов.
- Быстрое принятие решений. Приложения, машины, приборы и другие инструменты на базе ИИ принимают решения быстрее людей, что может использоваться в производственных процессах, в процессе аналитики данных, создании прогностических моделей, расчетах и других задачах.
Проблемы внедрения ИИ
Есть несколько причин, замедляющих внедрение и использование искусственного интеллекта.
- Для контролируемого обучения (с учителем) нейросетей нужно размечать (маркировать) наборы данных вручную. На это требуется много времени.
- Для обучения моделей нужен большой объем данных, которые нужно предварительно собрать из разных источников, структурировать, очистить от ненужной информации и привести к общему формату. Для такой работы нужна выстроенная система и штат специалистов.
- Результат, полученный в результате работы алгоритмов ИИ сложно трактовать и понять с точки зрения логики принятия решений.
- Модели ориентированы на решение определенных задач. Например, если алгоритм ИИ используется для обнаружения мошенничества конкретного вида, другие варианты мошенничества он распознавать не будет — для каждой задачи и каждых условий нужна своя модель.
- Если исходный набор данных для обучения искажен или недостаточен, результаты работы ИИ могут быть искажены. Например, если в выборке для обучения используются только объекты красного цвета, при появлении синего объекта в процессе самообучения могут возникнуть ошибки или разногласия.
- Для работы с ИИ и разработки проектов на его базе важно иметь достаточную компетенцию, позволяющую оценивать риски и принимать решения на каждом этапе внедрения алгоритмов.
Ml Space
Платформа полного цикла ML-разработки на мощностях суперкомпьютера Christofari доступна любому бизнесу
