Глубокое обучение
Статья
Время чтения
2 минуты
Глубокое или глубинное обучение (Deep Learning, DL) — тип машинного обучения (Machine Learning, ML), задействующий искусственные нейронные сети, моделирующие аналитические действия человеческого мозга, чтобы научить цифровые системы самообучаться и принимать решения на основе неструктурированных неразмеченных данных.
Гипервизор — программное обеспечение для создания, запуска и контроля виртуальных машин. На них могут быть установлены разные операционные системы (ОС). Они изолированы от аппаратных систем и используют ресурсы виртуального компьютера, на котором запущены.
Результативность Deep Learning определяется работой искусственных нейронных сетей, которые выявляют закономерности, придерживаются входящих правил, создают знания на основе примеров и имитируют человеческие реакции.
Deep Learning базируется на использовании нескольких уровней обработки:
входящего;
процессных;
выходящего.
Основа Deep Learning — входящие данные, которые помогают алгоритмам найти и запомнить общие признаки для их последующего выявления на необработанных данных. Поэтому, чем больше входных данных — тем лучше.
Примечание: Нейронные сети могут настраиваться с помощью библиотек Python.
Как осуществляется глубокое обучение
Глубокое обучение напоминает процесс обучения человека на собственных ошибках — при совершении ошибок алгоритм получает штраф, представленный с точки зрения математики корректировкой работы функции.
Обучение сводится к нескольким этапам:
загрузке массива данных;
выявлению признаков и подготовке ответа;
проверке ответа на соответствие;
завершению обучения или перенастройке сети и повторению цикла обучения.
При таком алгоритме результат каждой последующей попытки становится ближе к правильному ответу: на точность влияет не только объем исходных данных, но и продолжительность обучения.
Примечание: На скорость обучения влияет объем задействованных для этого вычислительных мощностей.
Примеры использования глубокого обучения
Метод может использоваться для решения задач в разных областях. Например, его часто применяют для анализа изображений с целью их классификации, сегментации и обработки.
Классификация
Задача предполагает анализ изображений и разделение объектов на них на классы. Например, в практике DL используют для отделения целых компонентов от поврежденных и их последующей сортировки по типам повреждений. Так, в производстве матриц для ноутбуков классификация будет заключаться в проверке каждого изделия на целостность и разделения изображений по характеру дефектов.Сегментация изображений и распознавание объектов
Сегментация подразумевает определение класса каждого пикселя изображения. Такой подход помогает алгоритмам различать объекты даже на больших и заполненных изображениях — находить на картинках дорожные знаки указанной формы, автомобили, здания и другие объекты с установленными ранее признаками.Например, Deep Learning может распознать объекты на конвейерной ленте и отнести их к той или иной группе.Обработка изображений
Метод может использоваться для обработки и оптимизации фотографий и видеофайлов. Благодаря четкой работе алгоритмов и искусственных нейронных сетей, DL убирать помогает с кадров шум, компенсировать искажения, восстанавливать поврежденные или неудавшиеся участки изображения и других задач.